Identification of amino acid residues in the catalytic domain of RNase E essential for survival of Escherichia coli: functional analysis of DNase I subdomain.

نویسندگان

  • Eunkyoung Shin
  • Hayoung Go
  • Ji-Hyun Yeom
  • Miae Won
  • Jeehyeon Bae
  • Seung Hyun Han
  • Kook Han
  • Younghoon Lee
  • Nam-Chul Ha
  • Christopher J Moore
  • Björn Sohlberg
  • Stanley N Cohen
  • Kangseok Lee
چکیده

RNase E is an essential Escherichia coli endoribonuclease that plays a major role in the decay and processing of a large fraction of RNAs in the cell. To better understand the molecular mechanisms of RNase E action, we performed a genetic screen for amino acid substitutions in the catalytic domain of the protein (N-Rne) that knock down the ability of RNase E to support survival of E. coli. Comparative phylogenetic analysis of RNase E homologs shows that wild-type residues at these mutated positions are nearly invariably conserved. Cells conditionally expressing these N-Rne mutants in the absence of wild-type RNase E show a decrease in copy number of plasmids regulated by the RNase E substrate RNA I, and accumulation of 5S ribosomal RNA, M1 RNA, and tRNA(Asn) precursors, as has been found in Rne-depleted cells, suggesting that the inability of these mutants to support cellular growth results from loss of ribonucleolytic activity. Purified mutant proteins containing an amino acid substitution in the DNase I subdomain, which is spatially distant from the catalytic site posited from crystallographic studies, showed defective binding to an RNase E substrate, p23 RNA, but still retained RNA cleavage activity-implicating a previously unidentified structural motif in the DNase I subdomain in the binding of RNase E to targeted RNA molecules, demonstrating the role of the DNase I domain in RNase E activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of the amino acid residues involved in an active site of Escherichia coli ribonuclease H by site-directed mutagenesis.

The amino acid residues essential for the catalytic activity of ribonuclease H (RNase H) from Escherichia coli (E. coli) were identified by site-directed mutagenesis. It has been proposed by computer analysis that E. coli RNase H has homologous amino acid sequence with the RNase H domains of various retroviral reverse transcriptases (RTs) (Johnson, M. S., McClure, M. A., Feng, D. F., Gray, J., ...

متن کامل

Effect of Amino Acid Substitutions on Biological Activity of Antimicrobial Peptide: Design, Recombinant Production, and Biological Activity

Recently, antimicrobial peptides have been introduced as potent antibiotics with a wide rangeof antimicrobial activities. They have also exhibited other biological activities, including antiinflammatory,growth stimulating, and anti-cancer activities. In this study, an analog of MagaininII was designed and produced as a recombinant fusion protein. The designed sequence containe...

متن کامل

Effect of Amino Acid Substitutions on Biological Activity of Antimicrobial Peptide: Design, Recombinant Production, and Biological Activity

Recently, antimicrobial peptides have been introduced as potent antibiotics with a wide rangeof antimicrobial activities. They have also exhibited other biological activities, including antiinflammatory,growth stimulating, and anti-cancer activities. In this study, an analog of MagaininII was designed and produced as a recombinant fusion protein. The designed sequence containe...

متن کامل

Membrane binding of Escherichia coli RNase E catalytic domain stabilizes protein structure and increases RNA substrate affinity.

RNase E plays an essential role in RNA processing and decay and tethers to the cytoplasmic membrane in Escherichia coli; however, the function of this membrane-protein interaction has remained unclear. Here, we establish a mechanistic role for the RNase E-membrane interaction. The reconstituted highly conserved N-terminal fragment of RNase E (NRne, residues 1-499) binds specifically to anionic ...

متن کامل

Importance of the C-terminal helix to the stability and enzymatic activity of Escherichia coli ribonuclease H.

The ribonuclease H (RNase H) family of enzymes selectively degrades the RNA strand of RNA-DNA hybrids. This activity is essential for retroviruses such as HIV and resides in a domain of the larger reverse transcriptase molecule. RNase H from Escherichia coli is the best-characterized member of the family and serves as a model for structure/function studies. Despite having almost identical alpha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 179 4  شماره 

صفحات  -

تاریخ انتشار 2008